
Application of Artificial Intelligence on online instant messaging platforms for the
purpose of moderation
Author: Bojan Rađenović

The Twelfth Belgrade Grammar School and Regional Centre for Talented Youth Belgrade II, E-mail: bojan@radjenovic.dev
Supervisor: Mateja Opačić, Regional Centre for Talented Youth Belgrade II

1. Introduction
In today’s society, most of our communication happens
using the internet. For example, if we want to make plans
with our friends or if we want to meet people with similar
interests. However, I have noticed an issue with online
chat rooms. The problem with public messaging platforms is
bad behaviour and rudeness. The spread of negativity
requires the presence of people to monitor the chat rooms,
but this can be a demanding and sometimes unsuccessful
process. I had experience with monitoring rooms and wanted
something that could make the process easier. This project
aims to facilitate the process of moderation by making a
program that automatically analyzes messages and monitors
chat rooms or forwards the messages for further analysis.

2. Material and Methods
The point of this project is to make a program based on
artificial intelligence. The idea is to create a Discord Bot on
the messaging platform Discord that would be able to
perform automatic message analysis. A Discord Bot is a
member of a chat room that is like a normal user. They are
used to automate various actions using Discord’s public API.
Many Python libraries provide easier access to Discord's
API. For message sentiment analysis, I decided to use
Machine Learning. I used the TensorFlow library for model
training and the disnake (1) library for interacting with the
Discord API. I also have automated dataset collection. I
created a Discord Bot, which automatically saves messages
into a MySQL database from a public chat room. When I had
collected around 30,000 messages, I decided to do
pre-processing. This included deleting commas, periods, and
some words. However, I also had to delete some messages
from the database because they were repeated or in different
languages. I ended up with a database containing about
20,000 messages. Due to the efficiency of training the model
and the project itself, I used an already existing model from
Google “Natural Language Processing Model” (2). This
model from Google performs text embedding and is
pre-trained using various news articles. I used my dataset
with this model. Once I had finished training the model, I
started working with the part that interacts with Discord. The
disnake library works on the principle of events. For every
action in the chat room itself, there is an event (user enters a
room, exits, sends a message...). Using the “send message”
event, I made the Discord Bot forward the message to the
model for classification.

3. Results and Discussion
When I was working on the model itself, I had to change the
parameters (learning rate, layers...) several times. Each
training took about 10-15 minutes. I ended up with a model
that was 80-90% accurate. Once I finished the Discord part,
I decided to add the Discord Bot to multiple chat rooms.
However, the Discord Bot would sometimes take the wrong
action and disrupt conversations, so I decided to keep auto-
monitoring as a side option. By default, the Discord Bot
notifies the chat room staff instead of acting on its own.
Users also have the option to check if their message is
classified as positive or negative by sending it privately to
the Discord Bot.

4. Conclusion
For a project of minimal value, the idea was to create a
program that would, on one platform, facilitate the
monitoring of chat rooms. The program works exactly as
intended. It assists in monitoring by forwarding questionable
messages or by monitoring itself. In the future, I want to
continue developing this project. The idea is to apply this
model to other platforms that allow public chat rooms and to
add support for multiple languages.

5. References
1. A Python library for interacting with the Discord API

(https://github.com/DisnakeDev/disnake)
2. Google’s model that does text wrapping

(https://tfhub.dev/google/nnlm-en-dim50/2)

https://github.com/DisnakeDev/disnake
https://tfhub.dev/google/nnlm-en-dim50/2

	1. Introduction
	2. Material and Methods
	3. Results and Discussion
	4. Conclusion
	5. References

